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ABSTRACT 
  
 
An integrated nitrogen model has been developed to investigate the fate and 
distribution of nitrogen in the aquatic and terrestrial environment. This Integrated 
Nitrogen in CAtchments model (INCA) simulates flow, nitrate and ammonium and 
tracks the temporal variations in hydrological flow paths and nitrogen mass operating 
in both land and river phases. Dilution, natural decay and biochemical transformation 
processes are included in the model as well as interactions with plant biomass. It is 
semi-distributed to account for spatial variations in land use, human impacts, effluent 
discharges and varying deposition levels, and produces daily estimates of the stream 
water flow and nitrate and ammonium concentrations, in addition to estimates of 
annual, land-use specific, N fluxes. 
 
While the model has been successfully applied to a range of catchments in the U.K. 
and Europe, little work on parameter sensitivity and identifiability has been carried 
out on it to date. A detailed study of these issues should aid the successful calibration 
of further catchment applications by highlighting the most significant parameters and 
allowing informed decisions as to the areas in which experimental resources and 
measurements should be allocated.  
 
It is also necessary to provide measures of the uncertainty present due to measurement 
errors in the inputs, parametric uncertainty, and issues related to model 
conceptualisation. INCA, describing a set of complicated environmental processes 
with dependencies on both space and time, is necessarily a simplified representation 
of the phenomena being studied. This imposes a limit upon one's confidence in its 
responses or outputs, regardless of the accuracy of any input information. The input 
itself is subject to many sources of uncertainty, including measurement errors, 
absence of information and incomplete understanding of underlying driving forces 
and mechanisms. Adequate spatial representation is particularly difficult, due to the 
intrinsic variability present within the environment, such as the continuous variation 
in soil properties and nitrogen inputs over space, and the difficulty of characterising 



properties in the subsurface. Therefore, spatial information is likely to be severely 
limited in any application of the model.   
 
To address these considerations, a collection of Monte Carlo routines within a 
subjective probability framework has been developed for use with the INCA model. 
Markov chain Monte Carlo methods (using Metropolis Hastings formulae) are used to 
sample parametric and uncertain quantities. The framework permits both parametric 
and model structural uncertainty to be interrogated, and allows effective calibration 
and confidence predictions through optimisation of model inputs to fit observations or 
other criteria, with explicit consideration of effects of data uncertainty.   
 
MCMC methods possess the general virtue of simulation methods, with information 
regarding parametric probability distributions easily collected along with optimal 
parameter sets. However, other sampling methods generally fail when the posterior 
involves many variables or is otherwise intractable. Markov chain methods are 
capable of sampling from posterior distributions of arbitrary complexity, through the 
Metropolis Hastings algorithm, which provides simple conditions under which the 
chain will equilibrate to the required distribution. Since such methods sit naturally 
within a subjective probability framework, they are also capable of quantifying 
distortions produced on the outputs by noise. Such a capability is indispensable for 
rigorous analysis of an environmental model such as INCA, as the input is subject to 
extreme uncertainty. 
 
Markov chains are constructed such that their equilibrium distribution is equal to the 
posterior distribution of interest, and each state is visited the required number of times 
to satisfy the conditional distribution of the parameters given the data. This is 
achieved through satisfying appropriate conditions of reversibility (detailed balance) 
and ergodicity. By giving the microscopic dynamics of the Markov chain the 
(unnormalised) input distribution is implicitly fixed. This allows the treatment of 
problems that are too complex for an explicitly specified input distribution, such as 
identifying the posterior uncertainty of the INCA parameters given optimality 
constraints, or efficiently reconstructing the inputs from output distributions.  
 
The equilibrium, or posterior distribution, is obtained via Bayes’ rule. This equation 
describes the current knowledge regarding parameter distributions, given initial 
knowledge and information from prior runs, and allows potential for converging upon 
the “true” input distributions through incorporation of learnt information. The draws 
from the Markov chain are accomplished through variants of the pleasingly simple 
Metropolis Hastings formulae, involving proposals of candidate values through a 
proposal function and rejection/acceptance steps. This proposal function is 
constructed such that it implicitly defines the required conditional distributions, along 
with satisfying the necessary Markov chain conditions. For the INCA applications 
described here, distributions have been defined as conditional upon aspects of the 
model response and optimality criteria imposed upon the analysis. Proposal functions 
have also been constructed to allow sampling to be efficiently weighted towards 
subsets of the distribution where this is desirable.  
 
The performance of the modelling framework is illustrated with data from the Kennet 
catchment in southern England. This is a groundwater-dominated catchment draining 
an area of 1164 km2, with a chalk aquifer supplying approximately 95% of its water. 



As it has been a focus of a variety of water quality and ecological concerns, there is a 
relatively large amount of data available to compare model response against.  To 
understand the characteristics of both overall uncertainty and particular parametric 
sensitivities in INCA, the effect of changes in the parameters and inputs are examined 
using the Markov chain sampling described above. Response surfaces, in this case 
distributions of input parameters against single-valued measures of performance 
(derived from the output parameters and optimality criteria), are examined, and the 
biases caused by differing optima considered. The influence of such biases on 
subsequent decisions regarding parameter sensitivities and “optimal” parameter sets is 
examined. The efficiencies of differing Metropolis proposal functions applied to 
sample both the “minima” and entirety of a given response surface are also 
investigated. 

 
To address questions regarding the appropriateness of the model structure and 
propose efficient calibration strategies, results are applied to identify components of 
the model structure that appear most significant in the simulation of nitrogen 
dynamics in river systems, aspects that appear redundant, and the most pertinent data 
for model/process identification. The relative importance of differing measurands 
over space is also examined, and suggestions for subsequent allocation of 
experimental resources made. Residual model uncertainty is translated into prediction 
confidence limits for management purposes.  
 
The results demonstrate the power of Markov chain Monte Carlo methods to 
quantitatively examine the inter-relationship between model structure, parameter 
identifiability and data support, and also provide an efficient means of addressing the 
problem of calibration given large parameter sets and the presence of measurement 
error and other uncertainties.  
 
 
 
 
 
 
 
  
 
 


